Nonlinear eigenvalue problems and contour integrals

Marc Van Barel *, Peter Kravanja

KU Leuven, Department of Computer Science, Celestijnenlaan 200A, B-3001 Leuven (Heverlee), Belgium

A R T I C L E I N F O

Article history:
Received 18 October 2014

MSC:
65-F15
47-J10
30-E05

Keywords:
Nonlinear eigenvalue problems
Contour integrals
Keldysh' theorem
Beyn's algorithm
Canonical polyadic decomposition
Filter function

A B S T R A C T

In this paper Beyn’s algorithm for solving nonlinear eigenvalue problems is given a new interpretation and a variant is designed in which the required information is extracted via the canonical polyadic decomposition of a Hankel tensor. A numerical example shows that the choice of the filter function is very important, particularly with respect to where it is positioned in the complex plane.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the following nonlinear eigenvalue problem. Given an integer \(m \geq 1 \), a domain \(\Omega \subset \mathbb{C} \) and a matrix-valued function \(T : \Omega \rightarrow \mathbb{C}^{m \times m} \) analytic in \(\Omega \), we want to determine the values \(\lambda \in \Omega \) (eigenvalues) and \(v \in \mathbb{C}^{m} \), \(v \neq 0 \) (eigenvectors) such that

\[T(\lambda)v = 0. \]

More specifically, given a closed contour \(\Gamma \subset \Omega \) that has its interior in \(\Omega \), we consider the problem of approximating all eigenvalues (and corresponding eigenvectors) inside \(\Gamma \). We observe that if the problem size \(m \) is equal to 1, then the problem reduces to that of computing all the zeros \(\lambda \) of the analytic scalar function \(T \) inside the closed contour \(\Gamma \).

The approach discussed in this paper is based on (numerical approximations of) contour integrals of the resolvent operator \(T(z)^{-1} \) applied to a rectangular matrix \(\hat{V} \):

\[\frac{1}{2\pi i} \int_{\Gamma} f(z)T(z)^{-1}\hat{V} \, dz \in \mathbb{C}^{m \times q} \]

where \(f : \Omega \rightarrow \mathbb{C} \) is analytic in \(\Omega \) and \(\hat{V} \in \mathbb{C}^{m \times q} \) is a matrix chosen randomly or in another specified way, with \(q \leq m \).

Using contour integrals to solve linear and nonlinear eigenvalue problems is a relatively recent development compared to the history of applying such methods to look for the zeros of a scalar analytic function, a problem that we investigated in [1]. Our approach was based on the pioneering work of Delves and Lyness [2] (see also [3] for a recent overview of numerical algorithms based on analytic function values at roots of unity). We reduced the problem to a generalized eigenvalue problem

* Corresponding author.
E-mail addresses: Marc.VanBarel@cs.kuleuven.be (M. Van Barel), peterkravanja@gmail.com (P. Kravanja).

http://dx.doi.org/10.1016/j.cam.2015.07.012
0377-0427/© 2015 Elsevier B.V. All rights reserved.
involving a Hankel matrix as well as a shifted Hankel matrix consisting of the moments of the analytic function T. For generalized linear eigenvalue problems corresponding to the pencil $A - zB$ Tetsuya Sakurai and his co-authors [4–7] (see also [8] for the specific case where $A, B \in \mathbb{R}^{m \times m}$ are symmetric and B is positive definite) use

$$
\frac{1}{2\pi i} \int_{\Gamma} (z - \gamma)^p (zB - A)^{-1} \hat{v} dz, \quad p = 0, 1, 2, \ldots
$$

where $\gamma \in \mathbb{C}$ belongs to the interior of Γ and the vectors $\hat{u}, \hat{v} \in \mathbb{C}^m$ have been chosen at random. Note that these contour integrals are scalar moments based on the resolvent $(zB - A)^{-1}$. Given an upper estimate q for the number of eigenvalues of $A - zB$ located inside Γ, these contour integrals are approximated via a quadrature formula (e.g., the trapezoidal rule if Γ is the unit circle) for $p = 0, 1, \ldots, 2q - 1$. The generalized eigenvalue problem (of size $q \times q$) involving the Hankel matrix and the shifted Hankel matrix based on the moments leads to approximations of the eigenvalues of $A - zB$ located inside Γ.

To approximate the eigenvectors, specific linear combinations are taken from the columns of the rectangular matrix given by

$$
\frac{1}{2\pi i} \int_{\Gamma} (z - \gamma)^p (zB - A)^{-1} \hat{v} \in \mathbb{C}^m
$$

for $p = 0, 1, \ldots, q - 1$.

Eric Polizzi [9] studied the pencil $A - zB$ where $A, B \in \mathbb{C}^{m \times m}$ are Hermitian and B is positive definite. To compute all the eigenvalues located inside a compact interval on the real axis (enclosed by the contour Γ), he considered

$$
S = \frac{1}{2\pi i} \int_{\Gamma} (zB - A)^{-1} \hat{B} \hat{V} dz
$$

for a rectangular matrix $\hat{V} \in \mathbb{C}^{m \times q}$ chosen at random, given an upper estimate q for the number of eigenvalues.

Polizzi’s FEAST algorithm can be summarized as follows (see also Krämer et al. [10]; Tang and Polizzi [11]; Laux [12]; Güttel et al. [13]):

1. Choose $\hat{V} \in \mathbb{C}^{m \times q}$ of rank q.
2. Compute S by contour integration.
3. Orthogonalize S resulting in the matrix Q having orthonormal columns.
4. Form the Rayleigh quotients

$$
A_0 = Q^H A Q \quad \text{and} \quad B_0 = Q^H B Q.
$$

5. Solve the size-q generalized eigenvalue problem

$$
A_0 \hat{Y} = B_0 \hat{Y} \hat{A}.
$$

6. Compute the approximate Ritz pairs $(\hat{A}, \hat{X} = Q \hat{Y})$.
7. If convergence is not reached, then go to Step 1, with $\hat{V} = \hat{X}$.

To compute all the eigenvalues inside the contour Γ for a nonlinear analytic function T, Tetsuya Sakurai and his co-authors [14,15] (see also [16] for the specific case of polynomial eigenvalue problems) use the scalars

$$
\frac{1}{2\pi i} \int_{\Gamma} z^p \hat{u}^H T(z^{-1}) \hat{v} dz, \quad p = 0, 1, 2, \ldots
$$

where the vectors $\hat{u}, \hat{v} \in \mathbb{C}^m$ have been chosen at random. To approximate the eigenvectors, they consider the vectors

$$
\frac{1}{2\pi i} \int_{\Gamma} z^p T(z^{-1}) \hat{v} dz, \quad p = 0, 1, 2, \ldots
$$

The eigenvectors are specific linear combinations of these vectors.

In this paper, we present a new interpretation of Beyn’s algorithm [17]. Contrary to Beyn, who is not interested in the eigenvalues located outside the contour Γ, we will indicate that these eigenvalues, as well as the behaviour of the analytic function T outside but near Γ, play an important role to assess the accuracy of the computed eigenvalues. To simplify the technical details, we consider only simple eigenvalues. It is straightforward, however, to extend our approach to multiple eigenvalues by using the results that Beyn has described for this case.

Our paper is organized as follows. In Section 2, we start by summarizing Beyn’s algorithm, which is based on Keldysh’ theorem. For the sake of simplicity, we consider only simple eigenvalues. Section 3 describes the effect of approximating the contour integrals by numerical integration and introduces the corresponding filter function, which we use to reinterpret Beyn’s algorithm in Section 4. In Section 5, we propose a variant of the most important substep of Beyn’s algorithm: the extraction of the eigenvalue and eigenvector information from the computed moments. Our variant is based on the canonical polyadic decomposition of a Hankel tensor composed from the moments. Section 6 provides three strategies for solving a specific nonlinear eigenvalue problem. Finally, the conclusions are given in Section 7.
2. Beyn’s algorithm

We start by summarizing Beyn’s algorithm [17]. His approach is based on Keldysh’ theorem, which we recall here for the case of simple eigenvalues.

Theorem 1 (Keldysh [18,19]), Let $\mathcal{C} \subset \Omega$ be a compact subset, let T be a matrix-valued function $T : \Omega \to \mathbb{C}^{m \times m}$ analytic in Ω and let $n(\mathcal{C})$ denote the number of eigenvalues of T in \mathcal{C}.

Let λ_k for $k = 1, \ldots, n(\mathcal{C})$ denote these eigenvalues and suppose that all of them are simple. Let v_k and w_k for $k = 1, \ldots, n(\mathcal{C})$ denote their left and right eigenvectors, such that

$$T(\lambda_k)v_k = 0 \quad w_k^HT(\lambda_k) = 0 \quad w_k^HT'(\lambda_k)v_k = 1.$$

Then there is a neighbourhood \mathcal{U} of \mathcal{C} in Ω and an analytic function $R : \mathcal{U} \to \mathbb{C}^{m \times m}$ such that the resolvent $T(z)^{-1}$ can be written as

$$T(z)^{-1} = \sum_{k=1}^{n(\mathcal{C})} v_k w_k^H(z - \lambda_k)^{-1} + R(z) \quad (1)$$

for all $z \in \mathcal{U} \setminus \{\lambda_1, \ldots, \lambda_{n(\mathcal{C})}\}$.

We observe that if T is a matrix-valued strictly proper rational function, the analytic function R is equal to zero. This is the case, for example, if $T(z) = A - zB$ with B nonsingular or if $T(z)$ is a matrix polynomial in z with nonsingular highest degree coefficient.

Using expression (1) for the resolvent, we derive the following expression for the corresponding contour integral.

Corollary 1. Suppose that T has no eigenvalues on the contour $\Gamma \subset \Omega$ and let $n(\Gamma)$ denote the number of eigenvalues of T inside Γ.

Let λ_k for $k = 1, \ldots, n(\Gamma)$ denote these eigenvalues and suppose that all of them are simple. Let v_k and w_k for $k = 1, \ldots, n(\Gamma)$ denote the corresponding left and right (normalized) eigenvectors.

Then

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) T(z)^{-1} \, dz = \sum_{k=1}^{n(\Gamma)} f(\lambda_k) v_k w_k^H$$

for any function $f : \Omega \to \mathbb{C}$ that is analytic in Ω.

With respect to the question of how to develop methods for approximating the eigenvalues inside the contour Γ, the previous corollary informs us that, when “measuring” the resolvent by contour integration with respect to an analytic function f, the result is a sum of rank one terms where only the magnitude of these rank one terms depends on f.

This observation leads to Beyn’s method in the following way. Define the matrices $V, W \in \mathbb{C}^{m \times n(\Gamma)}$ as follows:

$$V = [v_1 \cdots v_{n(\Gamma)}],$$

$$W = [w_1 \cdots w_{n(\Gamma)}].$$

Assume that $n(\Gamma)$ is not larger than the system dimension m. In large-scale problems we actually expect to have $n(\Gamma) \ll m$. Assume also that $\text{rank}(V) = \text{rank}(W) = n(\Gamma)$, which is the case in typical applications. In case these assumptions are not satisfied, we refer to Section 3.

Choose $q \in \mathbb{N}$ such that $n(\Gamma) \leq q \leq m$ and choose the matrix $\hat{V} \in \mathbb{C}^{m \times q}$ such that $W^H \hat{V} \in \mathbb{C}^{n(\Gamma) \times q}$ has rank $n(\Gamma)$.

Define the matrices $S_0, S_1 \in \mathbb{C}^{m \times q}$ as follows:

$$S_0 = \frac{1}{2\pi i} \int_{\Gamma} T(z)^{-1} \hat{V} \, dz,$$

$$S_1 = \frac{1}{2\pi i} \int_{\Gamma} zT(z)^{-1} \hat{V} \, dz.$$

Then

$$S_0 = VW^H \hat{V},$$

$$S_1 = V \Lambda W^H \hat{V},$$

where the matrix $\Lambda \in \mathbb{C}^{n(\Gamma) \times n(\Gamma)}$ is defined as

$$\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_{n(\Gamma)}).$$
The remaining problem is the following: how to extract the eigenvalue and eigenvector information, \(\Lambda \) and \(V \), from the computed matrices \(S_0 \) and \(S_1 \)? Beyn’s method [17] is based on the singular value decomposition of \(S_0 \). Let

\[
S_0 = V_0 \Sigma_0 W_0^H
\]

where

\[
V_0 \in \mathbb{C}^{m \times n(\Gamma)}, \quad V_0^H V_0 = I, \\
W_0 \in \mathbb{C}^{n \times n(\Gamma)}, \quad W_0^H W_0 = I, \\
\Sigma_0 = \text{diag}(\sigma_1, \ldots, \sigma_{n(\Gamma)}).
\]

Beyn has shown that

\[
V_0^H S_1 W_0 \Sigma_0^{-1} = Q \Lambda Q^{-1}
\]

where \(Q = V_0^H V \). It follows that \(V_0^H S_1 W_0 \Sigma_0^{-1} \) is diagonalizable. Its eigenvalues are the eigenvalues of \(T \) inside the contour and its eigenvectors lead to the corresponding eigenvectors of \(T \). In Section 3, we are going to present an alternative way of extracting the eigenvalue and eigenvector information based on the canonical polyadic decomposition of the tensor consisting of the two slices \(S_0 \) and \(S_1 \). However, we are first going to investigate the influence of approximating the contour integrals by numerical integration.

3. Numerical integration and filter functions

For several problems, e.g., when \(n(\Gamma) > m \), knowing only \(S_0 \) and \(S_1 \) is not sufficient to retrieve the eigenvalues and eigenvectors. Therefore, we are also considering the higher order moments. Define the matrices \(S_p \in \mathbb{C}^{m \times q} \) as follows:

\[
S_p = \frac{1}{2\pi i} \int_{\Gamma} z^p T(z)^{-1} \hat{V} \, dz, \quad p = 0, 1, 2, \ldots.
\]

We approximate \(S_p \) by a \(N \)-point quadrature formula with nodes \(z_j \) and corresponding weights \(\omega_j \) for \(j = 0, 1, 2, \ldots, N - 1 \).

\[
S_p \approx \tilde{S}_p = \sum_{j=0}^{N-1} \omega_j z_j^p T(z_j)^{-1} \hat{V}, \quad p = 0, 1, 2, \ldots.
\]

Note that for large-scale problems, that is with \(m \) large, most of the computational effort comes from computing the vectors \(T(z_j)^{-1} \hat{V} \) for \(j = 0, 1, \ldots, N - 1 \). One of the great advantages of contour integration methods is that this computation can be performed in parallel for the different values of \(z_j \) by computing the solution of the corresponding linear system \(T(z_j)X_j = \hat{V} \).

Using Keldysh’ theorem, we can rewrite (2) as

\[
\tilde{S}_p = \sum_{k=1}^{m(\Gamma)} v_k w_k^H \hat{V} \sum_{j=0}^{N-1} \frac{\omega_j z_j^p}{z_j - \lambda_k} + \sum_{j=0}^{N-1} \omega_j z_j^p R(z_j) \hat{V}.
\]

The function \(b_p : \mathbb{C} \rightarrow \mathbb{C} \) defined as

\[
b_p(z) = \sum_{j=0}^{N-1} \frac{\omega_j z_j^p}{z_j - z}, \quad p = 0, 1, 2, \ldots
\]

is called the filter function (of order \(p \)) corresponding to the quadrature formula. Recently there is a lot of interest studying and designing such filter functions. We refer the interested reader to [5,3,20]. Using this definition for the filter function, we can write \(\tilde{S}_p \) from (3) as

\[
\tilde{S}_p = \sum_{k=1}^{m(\Gamma)} v_k w_k^H \hat{V} b_p(\lambda_k) + \sum_{j=0}^{N-1} \omega_j z_j^p R(z_j) \hat{V}.
\]

If \(\Gamma \) is the unit circle, then the trapezoidal rule can be used as quadrature formula. In this case the nodes are given by

\[
z_j = e^{2\pi i j/N}
\]

whereas the weights are equal to

\[
\omega_j = \frac{2}{N}
\]

for \(j = 0, 1, 2, \ldots, N - 1 \). It follows that

\[
b_0(z) = \sum_{j=0}^{N-1} \frac{\omega_j}{z_j - z} = \frac{1}{N} \sum_{j=0}^{N-1} \frac{z_j}{z_j - z} = \frac{1}{1 - z^N}
\]
\[b_p(z) = \frac{\kappa - 1}{2} \sum_{j=0}^{\kappa - 1} \frac{\omega_j z^p_j}{z_j - z} = \frac{1}{N} \sum_{j=0}^{N-1} \frac{z^{p+1}_j}{z_j - z} = \frac{z^p}{1 - z^N} \]

for \(p = 1, 2, \ldots \). Therefore we may conclude that

\[b_p(z) = z^p b_0(z), \quad p = 0, 1, 2, \ldots \]

in case of the unit circle and the trapezoidal rule.

4. **Interpretation of Beyn’s algorithm based on the filter function**

We will limit our study to the unit circle case. A similar investigation can be carried out for other contours. Suppose that \(\Gamma \) is the unit circle. Then the ideal filter

\[\frac{1}{2\pi i} \int_{\Gamma} \frac{1}{z - \lambda} \, dz = \left\{ \begin{array}{ll} 1 & |\lambda| < 1 \\ 0 & |\lambda| > 1 \end{array} \right. \]

is approximated by

\[b_0(\lambda) = \frac{1}{1 - \lambda^N}. \]

Let \(\epsilon > 0 \) be small, \(\epsilon \ll 1 \). Then the \(\epsilon \)-level curve of \(b_0(\lambda) \), that is

\[\{ \lambda \in \mathbb{C} : |b_0(\lambda)| = \epsilon \} \]

is approximately a circle with its centre at the origin and radius \(\rho_{\epsilon,N} = \epsilon^{-1/N} \):

\[\left| \frac{1}{1 - \lambda^N} \right| = \epsilon \Rightarrow |\lambda| \approx \epsilon^{-1/N}. \]

Hence, for a fixed \(\epsilon \), doubling the number of quadrature nodes \(N \) involves the square root of this radius,

\[\rho_{\epsilon,2N} = \sqrt{\rho_{\epsilon,N}} \]

and, for fixed \(N \),

\[2\rho_{\epsilon,N} = \rho_{\epsilon,2N}. \]

Let \(\delta \approx 10^{-16} \) denote the machine precision (double precision). Then the following table indicates how \(\rho_{\delta,N} \) decreases as \(N \) increases as a power of 2.

<table>
<thead>
<tr>
<th>(N)</th>
<th>(\rho_{\delta,N})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>9741.98</td>
</tr>
<tr>
<td>8</td>
<td>98.70</td>
</tr>
<tr>
<td>16</td>
<td>9.93</td>
</tr>
<tr>
<td>32</td>
<td>3.15</td>
</tr>
<tr>
<td>64</td>
<td>1.78</td>
</tr>
<tr>
<td>128</td>
<td>1.33</td>
</tr>
<tr>
<td>256</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Figs. 1 and 2 provide a graphical representation of the filter function \(b_0 \) respectively its contour lines for \(N = 32 \). Note that in this case, all eigenvalues lying outside the disc with radius \(\rho_{\delta,32} \approx 3.15 \) are filtered away up to the machine precision.

Define the contour \(\Gamma_\epsilon \) as

\[\Gamma_\epsilon = \{ \lambda \in \mathbb{C} : |b_0(\lambda)| = \epsilon \}. \]

Note that for small values of \(\epsilon \), this contour is almost a circle with radius \(\rho_{\delta,N} \). Assume that \(\Gamma_\epsilon \) is inside \(\mathcal{C} \) (defined in Theorem 1), then we can split the set of eigenvalues into two subsets: the eigenvalues located inside \(\Gamma_\epsilon \) and those located outside or on \(\Gamma_\epsilon \). Let us assume that the eigenvalues located inside \(\Gamma_\epsilon \),

\[\lambda_1, \ldots, \lambda_{n(\Gamma_\epsilon)}, \]

are ordered such that

\[|b_0(\lambda_1)| \geq \cdots \geq |b_0(\lambda_{n(\Gamma_\epsilon)})| \]

and let us assume that the eigenvalues located outside \(\Gamma_\epsilon \),

\[\lambda_{n(\Gamma_\epsilon)+1}, \ldots, \lambda_{n(\mathcal{C})}, \]
are ordered such that
\[|b_0(\lambda_{n(C)})| \geq \cdots \geq |b_0(\lambda_{n(C)})|. \]

It follows that
\[
\tilde{S}_p = \sum_{k=1}^{n(C)} v_k w_k H \hat{V} b_p(\lambda_k) + \sum_{k=n(C)+1}^{n(C)} v_k w_k H \hat{V} b_p(\lambda_k) + \sum_{j=0}^{N-1} \omega_j z_j^p R(z_j) \hat{V}.
\]

We know that
\[|b_0(\lambda_k)| \leq |b_0(\lambda_{n(C)+1})| \lesssim \epsilon \]
for \(k = n(C) + 1, \ldots, n(C). \)

The convergence radius \(r \) of \(R(z) \) satisfies
\[r \geq \rho_{\epsilon,N}. \]

The exact value of \(r \) is determined by the minimum of the following two values: the smallest modulus of the eigenvalues outside \(C \) and the smallest modulus of the points for which \(T \) is not analytic. Note again that for polynomial and linear eigenvalue problems with nonsingular highest degree coefficient the function \(R \) is equal to zero.
Suppose we want to approximate the eigenvalues inside \(\Gamma_\epsilon \). So, we consider the second and third sums in the expression for \(\tilde{S}_p \) as error terms. Let us examine the norm of these terms. Define \(\hat{\lambda} \) as

\[
\hat{\lambda} = \lambda_{n(R_\epsilon)+1}.
\]

Then the norm of the dominant component of the second sum is equal to

\[
c_1 |b_\lambda(\hat{\lambda})| = c_1 \left| \frac{\hat{\lambda}^p}{1 - \hat{\lambda}^N} \right| \approx c_1 |\hat{\lambda}|^{p-N} \leq c_1 \epsilon^{1 - \frac{p}{N}}
\]

assuming \(p \leq N \). Based on Cauchy’s estimate, one can show that the norm of the third sum behaves as

\[
c_2 r^{p-N} \leq c_2 \epsilon^{1 - \frac{p}{N}}
\]

because

\[
r \geq \rho_k, N = e^{-1/N}.
\]

In summary, we obtain that

\[
\tilde{S}_p = \sum_{k=1}^{n(R_\epsilon)} v_k w_k^H \hat{V} b_\lambda(\lambda_k) + \Delta_1 + \Delta_2
\]

with

\[
\| \Delta_1 \| \approx c_1 |\hat{\lambda}|^{p-N} \leq c_1 \epsilon^{1 - \frac{p}{N}}
\]

and

\[
\| \Delta_2 \| \approx c_2 r^{p-N} \leq c_2 \epsilon^{1 - \frac{p}{N}}.
\]

The terms \(\Delta_1 \) and \(\Delta_2 \) can be considered as error terms contaminating the “true” value

\[
\tilde{S}_p = \sum_{k=1}^{n(R_\epsilon)} v_k w_k^H \hat{V} b_\lambda(\lambda_k).
\]

Note that to keep these error terms small, it is best to keep \(p \) small compared to \(N \).

Besides the error terms \(\Delta_1 \) and \(\Delta_2 \) of order \(\epsilon^{1 - \frac{p}{N}} \), not all eigenvalues are equally represented in the sum \(\tilde{S}_p \). E.g., for \(S_0 \), the more the eigenvalues are away from the unit disc, that is the smaller \(|b_0(\lambda_k)| \), the more the term corresponding to this eigenvalue is filtered away in the sum \(S_0 \). The different strategies to solve the nonlinear eigenvalue problem of Section 6 indicate that, under certain conditions, one can retrieve \(v_k \) (2-norm 1) and \(\lambda_k \) with relative residuals of magnitude

\[
c_3 \frac{\epsilon}{b_0(\lambda_k)}.
\]

A more detailed analysis is necessary.

5. Robust extraction of the eigenvalues \(\lambda_k \) and the eigenvectors \(v_k \) from the computed moments \(\tilde{S}_p \)

We now present an alternative for Beyn’s approach. We recall from (4) that

\[
\tilde{S}_p = \sum_{k=1}^{n(R_\epsilon)} v_k w_k^H \hat{V} b_\lambda(\lambda_k) + \Delta_1 + \Delta_2
\]

with \(\| \Delta_1 \| + \| \Delta_2 \| \) having size \(c_3 \epsilon^{1 - \frac{p}{N}} \) and that

\[
b_\lambda(\lambda_k) = \lambda_k^p b_0(\lambda_k)
\]

in case of the unit circle and the trapezoidal rule. Up to the error terms \(\Delta_1 \) and \(\Delta_2 \), it follows that

\[
\tilde{S}_p \approx \sum_{k=1}^{n(R_\epsilon)} v_k w_k^H \hat{V} \lambda_k^p b_0(\lambda_k) = V \Lambda^p \hat{W}^H
\]

where

\[
V = \begin{bmatrix} v_1 & \cdots & v_{n(R_\epsilon)} \end{bmatrix}, \\
\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_{n(R_\epsilon)}), \\
W = \begin{bmatrix} w_1 & \cdots & w_{n(R_\epsilon)} \end{bmatrix}, \\
\hat{W}^H = \text{diag}(b_0(\lambda_1), \ldots, b_0(\lambda_{n(R_\epsilon)})) W^H \hat{V}.
\]
Define H and $H^<$ as

$$H = \left[\hat{S}_0 \right] \approx V \hat{W}^H$$

and

$$H^< = \left[\hat{S}_1 \right] \approx V \Lambda \hat{W}^H.$$

In general, let

$$H = \begin{bmatrix}
\hat{S}_0 & \hat{S}_1 & \cdots & \hat{S}_\nu \\
\hat{S}_1 & & \ddots & \\
\vdots & & \ddots & \\
\hat{S}_\mu & \cdots & \cdots & \hat{S}_{\mu+\nu}
\end{bmatrix}
\approx \begin{bmatrix}
V \\
V \Lambda \\
\vdots \\
V \Lambda^\mu
\end{bmatrix} \begin{bmatrix}
\hat{W}^H & \Lambda \hat{W}^H & \cdots & \Lambda^\nu \hat{W}^H
\end{bmatrix}$$

and let

$$H^< = \begin{bmatrix}
\hat{S}_1 & \hat{S}_2 & \cdots & \hat{S}_{\nu+1} \\
\hat{S}_2 & & \ddots & \\
\vdots & & \ddots & \\
\hat{S}_{\mu+1} & \cdots & \cdots & \hat{S}_{\mu+\nu+1}
\end{bmatrix}
\approx \begin{bmatrix}
V \\
V \Lambda \\
\vdots \\
V \Lambda^\mu
\end{bmatrix} \Lambda \begin{bmatrix}
\hat{W}^H & \Lambda \hat{W}^H & \cdots & \Lambda^\nu \hat{W}^H
\end{bmatrix}$$

be defined as block Hankel matrices of block size $(\mu + 1) \times (\nu + 1)$.

Therefore, the canonical polyadic decomposition [21] of the tensor consisting of the two slices H and $H^<$ is given by

$$\sum_{k=1}^{n(I)} \begin{bmatrix} v_k \\ v_k \lambda_k \\ \vdots \\ v_k \lambda_k^\mu \
\end{bmatrix} \odot \begin{bmatrix} \hat{w}_k \\ \hat{w}_k \lambda_k \\ \vdots \\ \hat{w}_k \lambda_k^\mu
\end{bmatrix} \odot \begin{bmatrix} 1 \\ \vdots \\ \lambda_k
\end{bmatrix}$$

where \hat{w}_k denotes the kth column vector of \hat{W} for $k = 1, \ldots, n(I)$ and \odot denotes the outer product.

At the other end of the spectrum of all structured tensors that one can build from the computed moments \hat{S}_p, $p = 1, 2, \ldots, P$, we can consider the tensor whose slices are these moments. In this case the canonical polyadic decomposition is of the form

$$\sum_{k=1}^{n(I)} v_k \odot \hat{w}_k \odot \begin{bmatrix} 1 \\ \vdots \\ \lambda_k \\ \lambda_k^P
\end{bmatrix}.$$

All other possible “Hankel” tensors based on the moments can be considered too. Using a tensor approach instead of a matrix approach can lead to a more robust algorithm [22,23]. Tensorlab [24] provides a robust algorithm for computing this canonical polyadic decomposition. In our numerical experiments, the tensor variant has always computed solutions that are at least as accurate as via Beyn’s method. However, further analysis is necessary.

We are now able to formulate the skeleton of our algorithm for solving nonlinear eigenvalue problems via contour integrals.

1. Choose a filter function, that is a quadrature formula, and where to apply it in the complex plane based on $T(z)$ and the domain in which the requested eigenvalues are lying.
2. Choose $\hat{V} \in \mathbb{C}^{n \times q}$ of rank q.
3. Compute the moments \hat{S}_p, $p = 1, \ldots, P$ via contour integration based on the quadrature formula.
4. Compute the canonical polyadic decomposition of a Hankel tensor constructed from the computed moments \hat{S}_p.
5. The first and third factor matrices lead to the approximate eigenvectors and corresponding eigenvalues.
6. Numerical experiment

We have tested our algorithm on several linear, polynomial and nonlinear eigenvalue problems. Instead of presenting an overview of these experiments, we consider only one example and choose different scenarios to solve this nonlinear eigenvalue problem. We consider the gun problem from the collection of nonlinear eigenvalue problems established by Betcke, Higham, Mehrmann, Schroeder and Tisseur [25]. This problem is related to a model of a radio-frequency gun cavity. The problem size is equal to $m = 9956$ whereas the function T has the following form:

$$T(z) = \begin{bmatrix} K & M & iW_1 & iW_2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{z}} \\ \frac{\sqrt{z}}{z - \alpha} \end{bmatrix}$$

where K, M, W_1 and W_2 are sparse matrices, and $\alpha = (108.8774)^2$.

We would like to approximate all the eigenvalues located inside the circle that is symmetric with respect to the real axis, and that intersects the real axis at $\alpha = (108.8774)^2$ and $\beta = 340^2$.

We choose Γ as the unit circle and $N = 32$.

What is a good choice for the centre μ and the radius ρ such that we can apply the theory to $T(\mu + \rho z)$?

Let us consider different strategies.

Scenario 1. In this case, we choose the parameters μ and ρ such that $z = -3.1$ is mapped to the branch point α and such that the point $z = 2$ is mapped to the point β.

| z | $|b_0(z)|$ | $\mu + \rho z$ |
|-----|---------|----------------|
| -3.1 | $\approx 10^{-16}$ | α |
| 2 | $\approx 10^{-10}$ | β |

Because the convergence radius r of $R(z)$ is equal to 3.1 and

$$|b_0(r)| \approx 10^{-16}$$

the $R(z)$ part does not influence (up to machine precision) the computation of \tilde{S}_0 and \tilde{S}_1. In other words,

$$\tilde{S}_0 = \sum_{k=1}^{n(e)} v_k u_k^H \hat{V} b_0(\lambda_k),$$

$$\tilde{S}_1 = \sum_{k=1}^{n(e)} v_k u_k^H \hat{V} \lambda_k b_0(\lambda_k)$$

up to machine precision. This is indicated by the singular values of \tilde{S}_0 and \tilde{S}_1 shown in Fig. 3. One can clearly observe the different $|b_0(\lambda_k)|$ levels/sizes. Note that the difference between the blue and red dots gives an indication of the modulus of the corresponding eigenvalue.
By computing the canonical polyadic tensor decomposition with 23 terms, we obtain an approximation of 23 eigenvalues. The relative residual for each of the computed eigenvalues $\tilde{\lambda}_k$ with corresponding eigenvector \tilde{v}_k is given by

$$\epsilon_k = \frac{\|T(\tilde{\lambda}_k)\tilde{v}_k\|_1}{\|T(\tilde{\lambda}_k)\|_1 \|\tilde{v}_k\|_1}.$$

Fig. 4 plots these relative residuals. Because the accuracy of $\tilde{\lambda}_k$ depends on the extraction of the corresponding information from \tilde{S}_0 and \tilde{S}_1, this accuracy is limited to $|b_0(\tilde{\lambda}_k)|$. Hence, we expect that

$$\epsilon_k |b_0(\tilde{\lambda}_k)| \approx |b_0(r)|.$$

Let us check that

$$\|R_\alpha\| \approx \gamma \left(\frac{1}{r}\right)^{\alpha}$$

where $r = 3.1$ is the expected convergence radius of $R(z) = \sum_{\alpha \geq 0} R_\alpha z^\alpha$. One can approximate the norms $\|R_\alpha\|$ by using the Fast Fourier Transform. We are not giving the details here. The results shown in Fig. 5 imply that the computed convergence radius $\tilde{r} \approx 2.55$. We miss an eigenvalue λ^* having the following properties:

$$|b_0(\lambda^*)| \approx 10^{-13}$$
Fig. 6. Eigenvalues. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Singular values of \tilde{S}_0 and \tilde{S}_1.

and

$$|\lambda^*| \approx 2.58 \approx \tilde{r}.$$

The two filled red dots in Fig. 6 indicate α and β. The red circle represents the eigenvalue λ^* that is missed, while the other blue circles represent the computed eigenvalues $\tilde{\lambda}_k$. Let us try another scenario.

Scenario 2. In this case, we choose the parameters μ and ρ such that $z = -2$ is mapped to the branch point α and such that the point $z = 2$ is mapped to the point β.

$$
\begin{align*}
 z & \quad |b_0(z)| & & \mu + \rho z \\
 -2 & \approx 10^{-10} & & \alpha \\
 2 & \approx 10^{-10} & & \beta
\end{align*}
$$

The convergence radius r of $R(z)$ now equals $r = 2$ and

$$|b_0(r)| \approx 10^{-10}.$$
In the computation of the moments \tilde{S}_0 and \tilde{S}_1, the $R(z)$ term now comes in with size of order 10^{-10}. Fig. 7 shows the singular values of \tilde{S}_0 and \tilde{S}_1. By computing the canonical polyadic tensor decomposition with 24 terms, we obtain an approximation of 24 eigenvalues. Fig. 8 plots the relative residuals.

Let us check that

$$\|R_\alpha\| \approx \gamma \left(\frac{1}{r}\right)^{\alpha}$$

where $r = 2$ is the convergence radius of $R(z) = \sum_{\alpha \geq 0} R_\alpha z^\alpha$. The results shown in Fig. 9 imply that $\tilde{r} \approx 2$. Note that R_0 is of the order 10^{-5} which explains why we get smaller values of the relative residual in Fig. 8. Comparing Figs. 6 and 10 one can observe that we have found the missing eigenvalue. However, the accuracy of this eigenvalue will be small. To derive this eigenvalue with high accuracy, we consider the following strategy.

Scenario 3. Let us consider a filter function having the following property: the eigenvalues that are lying in the neighbourhood of a branch point have a larger value of the modulus of the filter function compared to the “classical” filter functions.

Consider, for example, the filter function developed by Hale, Higham and Trefethen [26] to handle the branch point $z = 0$ of \sqrt{z}. A plot of the modulus of this filter function is shown in Fig. 11.
The transformation parameters μ and ρ are determined such that

$$z \quad |b_0(z)| \quad \mu + \rho z$$

$$-0.05 \approx 10^{-16} \quad \alpha$$

$$10 \quad \approx 10^{-7} \quad \beta$$

The singular values of \tilde{S}_0 and \tilde{S}_1 are shown in Fig. 12.

By computing the canonical polyadic tensor decomposition with 40 terms, we obtain an approximation of 40 eigenvalues. Fig. 13 plots the relative residuals. Note that this particular filter function allows to compute the eigenvalues in the neighbourhood of the branch point α with a higher accuracy compared to Scenario 2, see Fig. 14.

7. Conclusion

In this paper, we have shown that the accuracy of the computed eigenvalues and eigenvectors using contour integral “measurements” of the resolvent not only depends on the eigenvalues inside the contour Γ' but also on the eigenvalue configuration outside the contour Γ' where they are not completely filtered away by the filter function. In contrast to linear
and polynomial eigenvalue problems with nonsingular highest degree coefficient, the convergence radius of the R-term in the expression for the resolvent plays also a crucial role in assessing the accuracy of the computed eigenvalues. This convergence radius is determined by the points z in the neighbourhood of the contour Γ for which $T(z)$ is not analytic.

In the third scenario we have used a rational filter function that allows to approximate eigenvalues very accurately in the neighbourhood of a branch point of $T(z)$. In future research, we would like to develop an algorithm that designs good rational filters given the region in which one wants to approximate the eigenvalues accurately as well as the points in which $T(z)$ exhibits non analytic behaviour.

Acknowledgements

The research was partially supported by the Research Council KU Leuven, project OT/10/038 (Multi-parameter model order reduction and its applications), PF/10/002 Optimization in Engineering Centre (OPTEC), by the Fund for Scientific Research–Flanders (Belgium), G.0828.14N (Multivariate polynomial and rational interpolation and approximation), and by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office, Belgian Network DYSCO (Dynamical Systems, Control, and Optimization). The scientific responsibility rests with its author(s).
References