
On the generically superfast computation ofHankel determinantsMarc Van Barel and Peter KravanjaKatholieke Universiteit Leuven, Department of Computer ScienceCelestijnenlaan 200 A, B-3001 Heverlee (Belgium)E-mail: Marc.VanBarel@cs.kuleuven.ac.be,Peter.Kravanja@na-net.ornl.gov
SummaryWe present a generically superfast algorithm for computing the determinant ofa complex Hankel matrix whose size is a power of 2. Our approach exploits theconnections that exist between Hankel, Loewner, Cauchy and (coupled) Van-dermonde matrices. We show that the determinant of a Hankel matrix can becomputed from the determinant of a certain coupled Vandermonde matrix. Thelatter matrix is related to a linearized rational interpolation problem at rootsof unity and we show how its determinant can be calculated by multiplying thepivots that appear in the generically superfast interpolation algorithm that wepresented in a previous paper.1 IntroductionLet n be a power of 2 and let H = Hn := [hk+l]n�1k;l=0 be a nonsingular n � ncomplex Hankel matrix. We consider the problem of computing the determinantof H . By exploiting the connections between Hankel, Loewner, Cauchy, Vander-monde and coupled Vandermonde matrices, we will show how the determinantof H can be computed from the determinant of a coupled Vandermonde matrix.In our paper [5] we presented a generically superfast algorithm for linearizedrational interpolation at roots of unity. Superfast means that the arithmeticcomplexity of our algorithm is O(N log2N) for a problem that consists of Ninterpolation points. Generically refers to the fact that in some exceptional casesthe complexity of the algorithm is only O(N2). Linearized rational interpolationproblems can be written in terms of coupled Vandermonde matrices. We willshow how the determinant of such a matrix can be computed from the pivotsthat appear in our interpolation algorithm. This will enable us to compute detHin a generically superfast way.



The restriction that n has to be a power of 2 comes from the fact that ourinterpolation algorithm can only be applied in case N is of the form N = 2p+1for some p 2 N.2 Loewner, Cauchy and (coupled) Vandermonde matricesLet y1; : : : ;yn;z1; : : : ;zn be 2n mutually distinct complex numbers and de�ney := (y1; : : : ;yn) and z := (z1; : : : ;zn). Let L(y;z) be the class of matricesL(y;z) := nh ck � dlyk � zl ink;l=1 j c1; : : : ;cn;d1; : : : ;dn 2 C o:The elements of L(y;z) are called Loewner matrices. They bear the name of KarlLoewner who studied them in the context of rational interpolation and monotonematrix functions [4].The set L(y;z) is a linear space over C and a subspace of the linear spaceof all the n � n complex matrices. Since addition of a constant to all the 2nparameters ck;dl leads to the same Loewner matrix, its dimension is 2n�1. Theset of all the n � n complex Hankel matrices also forms a linear subspace ofdimension 2n � 1. Hankel and Loewner matrices are even more closely related.According to Fiedler [1] every Hankel matrix can be transformed into a Loewnermatrix and vice versa.Before we can formulate this theorem, we �rst have to deal with some prelim-inaries concerning Vandermonde matrices. Let t1; : : : ;tn be n complex numbersand de�ne t := (t1; : : : ;tn). The Vandermonde matrix with nodes t1; : : : ;tn isgiven by V (t) = V (t1; : : : ;tn) := [tl�1k ]nk;l=1. Let ft(z) be the monic polynomialof degree n that has zeros t1; : : : ;tn, ft(z) := (z � t1) � � � (z � tn), and de�neft;j(z) :=Qk 6=j(z� tk) for j = 1; : : : ;n. Note that ft;j(z) is a monic polynomialof degree n� 1 for j = 1; : : : ;n. De�ne the n� n matrix W (t) by the equation26664 ft;1(z)ft;2(z)...ft;n(z) 37775 = W (t)26664 1z...zn�1 37775 : (2.1)This means that the jth row of W (t) contains the coe�cients of ft;j(z) whenwritten in terms of the standard monomial basis f1;z; : : : ;zn�1g. ThenW (t) [V (t)]T = diag � ft;1(t1); : : : ;ft;n(tn) �: (2.2)The Vandermonde matrix V (t) is nonsingular if and only if its nodes t1; : : : ;tnare mutually distinct. In that case (2.2) implies that W (t) is nonsingular.Let V (y;z) be the 2n � 2n Vandermonde matrix with nodes y1; : : : ;yn andz1; : : : ;zn and similarly for W (y;z). 2



Theorem 1 The matrix L := W (y)H [W (z)]T is a Loewner matrix in L(y;z)whose parameters c1; : : : ;cn;d1; : : : ;dn are given by (up to an arbitrary additiveconstant � 2 C ) 2666666664 c1...cnd1...dn
3777777775 = W (y;z)2666664 h0h1...h2n�2�

3777775 :See Fiedler [1], Theorem 12. �Note that L is nonsingular.A judicious choice of the points y and z enables us to write the transformationfrom H to L in terms of unitary matrices. Let ! := exp(2� i=n) and supposefrom now on that yk = !k�1 for k = 1; : : : ;n. That is, let y = (1;!; : : : ;!n�1).Let � := exp(� i=n) and suppose from now on that zk = �yk for k = 1; : : : ;n.That is, let z = (�;�!; : : : ;�!n�1). Let 
n be the n� n Fourier matrix,
n := 1pnV (1;!; : : : ;!n�1): (2.3)Matrix-vector products involving 
n (
Hn ) amount to a(n) (inverse) discreteFourier transform (DFT) and can be evaluated via the celebrated (inverse) fastFourier transform (FFT) in O(n logn) 
ops. Finally, letDn;! andDn;� be the n�n diagonal matricesDn;! := diag (1;!; : : : ;!n�1) andDn;� := diag (1;�; : : : ;�n�1).Proposition 2 The matrices W (y) and [W (z)]T can be written asW (y) = pnDn;!
n and [W (z)]T = pn �n�1Dn;� 
Hn Dn;!:See Kravanja and Van Barel [3]. �These formulae imply that W (y)=pn and [W (z)]T =pn are unitary. It followsthat detL = nn� detH where the modulus of � 2 C is equal to one.The Loewner matrix L can be written asL = h ck � dlyk � zl ink;l=1 = h ckyk � zl ink;l=1 � h dlyk � zl ink;l=1 = D(c)C � CD(d)where D(c) := diag (c1; : : : ;cn), D(d) := diag (d1; : : : ;dn) and C is the Cauchymatrix C := h 1yk � zl ink;l=1 :We will now derive a representation of the Cauchy matrix C that involves theVandermonde matrices V (y) and V (z).Proposition 3 C = �diag �fz(yk)�nk=1��1V (y)[V (z)]�1 diag �fz;l(zl)�nl=1.3



Let � = [�k]nk=1 and � = [�k]nk=1 be two vectors in C n�1 . Consider the systemof linear equations C� = �. This can be written asnXl=1 1yk � zl �l = �k; k = 1; : : : ;n, nXl=1 �l fz;l(yk)fz(yk) = �k; k = 1; : : : ;n, p(yk)fz(yk) = �k; k = 1; : : : ;nwhere the polynomial p(t) is de�ned as p(t) :=Pnl=1 �l fz;l(t). Note that deg p(t) �n � 1. The vector � contains the coe�cients of p(t) with respect to the basisffz;l(t)gnl=1. If we write p(t) in terms of the standard monomial basis ftl�1gnl=1,p(t) =:Pnl=1 ~�l tl�1, then the connection between the vectors � and ~� := [~�l]nl=1is given by �T W (z) = ~�T : (2.4)This follows immediately from Equation (2.1). The fact that p(yk) = �kfz(yk)for k = 1; : : : ;n immediately implies that264 p(y1)...p(yn) 375 = V (y) ~� = diag �fz(yk)�nk=1 �: (2.5)Equation (2.4) implies that [W (z)]T� = ~�. Equation (2.5) then implies thatV (y)[W (z)]T � = diag �fz(yk)�nk=1 �, or, as C� = �, that V (y)[W (z)]TC�1� =diag �fz(yk)�nk=1 �. As � is arbitrary, it follows thatV (y)[W (z)]TC�1 = diag �fz(yk)�nk=1: (2.6)Equation (2.2) implies that V (z)[W (z)]T = diag �fz;l(zl)�nl=1 and hence[W (z)]T = [V (z)]�1 diag �fz;l(zl)�nl=1: (2.7)By combining (2.6) and (2.7) one easily obtains that indeedC = �diag �fz(yk)�nk=1��1V (y)[V (z)]�1 diag �fz;l(zl)�nl=1:This proves the proposition. �We de�ne the coupled Vandermonde matrix VC asVC := � V (y) �D(c)V (y)V (z) �D(d)V (z) � 2 C 2n�2n :The following theorem shows that detH can be easily computed from detVC .4



Theorem 4 detVC = i�2ni �n detH:The Schur complement formula implies thatdetVC = detV (y) det��D(d)V (z) + V (z)[V (y)]�1D(c)V (y)�= detV (y) det V (z) det�[V (y)]�1D(c)V (y) � [V (z)]�1D(d)V (z)�= [detV (z)]2 det�D(c)V (y)[V (z)]�1 � V (y)[V (z)]�1D(d)�:Now let D1 := diag �fz(yk)�nk=1 and D2 := diag �fz;l(zl)�nl=1 be the matricesthat appear in Proposition 3. Thendet VC = detD1detD2 [detV (z)]2 det�D(c)C � CD(d)�= detD1detD2 [detV (z)]2 detL:One can easily verify that fz(t) = tn � �n = tn + 1. Hence fz(yk) = 2 fork = 1; : : : ;n and thus detD1 = 2n. Also, Equation (2.2) implies that D2 =W (z)[V (z)]T . It follows thatdetVC = 2n detV (z)det[W (z)]T detL = 2n detV (z) detW (y) detH;where we have used Theorem 1. Since V (z) = V (y)Dn;� , 
n = V (y)=pn andW (y) = pnDn;!
n (Proposition 2), it follows thatdetVC = 2nj detV (y)j2 detDn;� detDn;! detH= (2n)n detDn;� detDn;! detH:One can easily verify that detDn;� = � (n�1)n2 and detDn;! = ! (n�1)n2 . HencedetDn;� detDn;! = exph (n� 1)n2 �in � (n� 1)n2 2�in i= exph� (n� 1)n2 �in i = hexp��i2 �i�(n�1) = i�(n�1):It follows that det VC = i�2ni �n detH . This proves the theorem. �
3 Superfast rational interpolationLet a(z) and b(z) be polynomials that satisfy the following degree conditions:a(z) is a monic polynomial of degree n and b(z) is a polynomial of degree < n.5



Suppose also that the following linearized rational interpolation conditions aresatis�ed: a(yk)� ckb(yk) = 0 and a(zl)� dlb(zl) = 0 for k;l = 1; : : : ;n. One canprove that these polynomials are uniquely determined by these conditions [6].Similarly, let c(z) be a polynomial of degree < n and d(z) a monic polynomialof degree n such that c(yk) � ckd(yk) = 0 and c(zl) � dld(zl) = 0 for k;l =1; : : : ;n. Again, these polynomials are uniquely determined. Let us combine bothinterpolation problems by considering the matrix polynomialB?(z) := � a(z) c(z)b(z) d(z) � 2 C [z]2�2 :Then B?(z) is the only monic 2� 2 matrix polynomial that satis�es[ 1 �ck ]B?(yk) = [ 0 0 ] and [ 1 �dl ]B?(zl) = [ 0 0 ]for k;l = 1; : : : ;n.In our paper [3] we presented a sequential algorithm for computing B?(z).The algorithm starts with the initialization B0(z) := I2 and then constructs thesequence B1(z); : : : ;Bn(z) where Bk(z) is a 2� 2 matrix polynomial of degree kfor k = 1; : : : ;n and Bn(z) � B?(z). After each step two additional interpolationconditions are satis�ed. In fact, each step can be seen as a combination of twosubsteps, each of which handles one additional interpolation condition. Also,there are two di�erent types of substeps: a \left" substep and a \right" substepand a step can consist of either the combination left+right or right+left. Moredetails can be found in [3]. Our algorithm is a fast algorithm: it has arithmeticcomplexity O(N2) where N := 2n. In [5] we used a divide-and-conquer approachto obtain a superfast O(N log2N) version of the algorithm.Let us de�ne the matrix ~VC 2 C 2n�2n as follows. For k = 1; : : : ;n the kth rowof ~VC is given by[ 1 �ck j yk �ckyk j � � � j yn�1k �ckyn�1k ]and for l = 1; : : : ;n the (n+ l)th row of ~VC is given by[ 1 �dl j zl �dlzl j � � � j zn�1l �dlzn�1l ]:Note that ~VC is obtained by reordering the columns of VC . One can show thatdet ~VC = (�1)� detVC where � = Pn�1j=1 j = (n � 1)n=2. The determinantof ~VC , and hence also detVC , can be easily computed from information gener-ated by our interpolation algorithm. Indeed, if B(z) is any 2 � 2 matrix poly-nomial, then the residual is de�ned as the matrix in C 2n�2 whose kth row isgiven by [ 1 �ck ]B(yk) for k = 1; : : : ;n and whose (n + l)th row is given by[ 1 �dl ]B(zl) for l = 1; : : : ;n. If B(z) � B?(z), then all the entries of theresidual are equal to zero. One can easily verify that the residual is given by~VC [Bk]n�1k=0 in case degB(z) < n and B(z) =: Pn�1j=0 Bjzj where Bj 2 C 2�2 forj = 0;1; : : : ;n� 1. The block vector [Bk]n�1k=0 is called the stacking vector of B(z).6



This leads to the following important observation. Let B̂0;B̂1; : : : ;B̂n�1 be thestacking vectors of the matrix polynomials B0(z);B1(z); : : : ;Bn�1(z) (consideredas polynomials of degree� n�1) generated by our interpolation algorithm. Then~VC [ B̂0 B̂1 � � � B̂n�1 ] =: R is a block lower triangular matrix whose blockmain diagonal consists of 2 � 2 matrices. The zero entries in R correspond tointerpolation conditions that are satis�ed. The more our algorithm proceeds, themore zeros appear. Note that [ B̂0 B̂1 � � � B̂n�1 ] is a block upper triangularmatrix as degBk(z) = k for k = 0;1; : : : ;n. We are going to show thatdet[ B̂0 B̂1 � � � B̂n�1 ] = 1: (3.8)This implies that det ~VC , and hence (�1) (n�1)n2 detVC , is equal to the productof the determinants of the 2� 2 blocks on the block main diagonal of R. We willinvestigate these determinants in a moment. Suppose that our interpolation al-gorithm takes a left+right step to go from Bk�1(z) to Bk(z) where k 2 f1; : : : ;ng.Then Bk(z) � Bk�1(z) � z � sL �L0 1 � � 1 0�R z � sR �for certain sL;sR;�L;�R 2 C (for more details, we refer to [5]). It follows thathdc Bk(z) = hdc Bk�1(z) � 1 �L0 1 �where hdc denotes the highest degree coe�cient. A similar result holds in casethe algorithm takes a right+left step. Hence det hdc Bk(z) = det hdc Bk�1(z) fork = 1; : : : ;n. As B0(z) := I2, it follows that det hdc Bk(z) = 1 for k = 0;1; : : : ;n.This proves (3.8).Let us now consider the 2�2 matrices that appear on the block main diagonalof R. Consider the kth block column of R where k 2 f1; : : : ;ng. This blockcolumn contains the residual that corresponds to Bk�1(z). Let D denote the2� 2 submatrix of this block column that is located on the block main diagonalof R. Suppose that our algorithm takes a left+right step to go from Bk�1(z)to Bk(z). In the left substep the (1;1)-entry in D is chosen as pivot and D ismodi�ed such that its (1;2)-entry becomes zero. The (2;2)-entry in the resultingmatrix is chosen as pivot in the right substep. This can be summarized as follows:� �L ?? ? �� 1 �L0 1 � = � �L 0? �R �where �L;�L;�R 2 C . It follows that detD = �L�R, in other words: the determ-inant of the 2�2 diagonal block is equal to the product of the pivot that is usedin the left substep and the pivot that is used in the right substep. Now supposethat the algorithm takes a right+left step to go from Bk�1(z) to Bk(z). In thiscase the following holds:� ? �R? ? �� 1 0�R 1 � = � 0 �R�L ? �7



where �L;�R;�R 2 C . Therefore detD = ��L�R, in other words: the determ-inant of the 2 � 2 diagonal block is equal to minus the product of the pivotthat is used in the right substep and the pivot that is used in the left substep.These observations lead to the following important conclusion: det ~VC is equalto � times the product of the pivots that appear in our interpolation algorithm,where � = �1 � � ��n and �k 2 f1;� 1g for k = 1; : : : ;n. If the algorithm takes aleft+right step to go from Bk�1(z) to Bk(z), then �k = 1. If it takes a right+leftstep, then �k = �1.So far we have only considered the fast version of our interpolation algorithm.The numerical stability of this algorithm is enhanced via pivoting and iterat-ive re�nement [3]. The superfast version that we presented in [5] is based ona divide-and-conquer approach in which at the lowest interpolation level thefast interpolation algorithm is used. Therefore, at this level the accuracy of thecomputed solution can be improved via pivoting and iterative re�nement. Aftercombining solutions of a lower level into a solution of the next level, one can againuse iterative re�nement. Another technique, explained in detail in [5], postponessome \di�cult" interpolation conditions until the very end of the algorithm. Allthese stabilizing techniques increase the accuracy of the solution to the interpol-ation algorithm and hence the accuracy of the computed determinant. However,one important di�erence with the solution of structured linear systems is thefact that we cannot use iterative re�nement at the very end of the algorithm toincrease the accuracy of the computed determinant. It is an open question if asimilar procedure exists for re�ning approximations for a determinant. As thelength of this paper is limited, we refer the reader who is interested in more de-tails and numerical examples to a companion paper about the fast and superfastcomputation of Toeplitz determinants [2].AcknowledgementsThis research was partially supported by the Fund for Scienti�c Research-Flanders(FWO-V), project \Orthogonal systems and their applications," grant #G.0278.97.References[1] M. Fiedler, Hankel and Loewner matrices, Linear Algebr. Appl. 58 (1984), 75{95.[2] P. Kravanja and M. Van Barel, Coupled Vandermonde matrices and the superfastcomputation of Toeplitz determinants, In preparation.[3] , A fast Hankel solver based on an inversion formula for Loewner matrices,Linear Algebr. Appl. 282 (1998), no. 1{3, 275{295.[4] K. Loewner, �Uber monotone Matrixfunktionen, Math. Z. 38 (1934), 177{216.[5] M. Van Barel and P. Kravanja, A stabilized superfast solver for inde�nite Hankelsystems, Linear Algebr. Appl. 284 (1998), no. 1{3, 335{355, Special issue on theInternational Linear Algebra Society Symposium \Linear Algebra in Control The-ory, Signals and Image Processing," held at the University of Manitoba, Canada,6{8 June 1997.[6] Z. Vav�r��n, Inverses of L�owner matrices, Linear Algebr. Appl. 63 (1984), 227{236.8


