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Summary

We present a generically superfast algorithm for computing the determinant of
a complex Hankel matrix whose size is a power of 2. Our approach exploits the
connections that exist between Hankel, Loewner, Cauchy and (coupled) Van-
dermonde matrices. We show that the determinant of a Hankel matrix can be
computed from the determinant of a certain coupled Vandermonde matrix. The
latter matrix is related to a linearized rational interpolation problem at roots
of unity and we show how its determinant can be calculated by multiplying the
pivots that appear in the generically superfast interpolation algorithm that we
presented in a previous paper.

1 Introduction

Let n be a power of 2 and let H = H,, := [hk+l]z77:10 be a nonsingular n X n
complex Hankel matrix. We consider the problem of computing the determinant
of H. By exploiting the connections between Hankel, Loewner, Cauchy, Vander-
monde and coupled Vandermonde matrices, we will show how the determinant
of H can be computed from the determinant of a coupled Vandermonde matrix.

In our paper [5] we presented a generically superfast algorithm for linearized
rational interpolation at roots of unity. Superfast means that the arithmetic
complexity of our algorithm is (’)(Nlog2 N) for a problem that consists of N
interpolation points. Generically refers to the fact that in some exceptional cases
the complexity of the algorithm is only O(N?). Linearized rational interpolation
problems can be written in terms of coupled Vandermonde matrices. We will
show how the determinant of such a matrix can be computed from the pivots
that appear in our interpolation algorithm. This will enable us to compute det H
in a generically superfast way.



The restriction that n has to be a power of 2 comes from the fact that our
interpolation algorithm can only be applied in case N is of the form N = 2P+!
for some p € N.

2 Loewner, Cauchy and (coupled) Vandermonde matrices

Let y1,...,Yn,21,...,2, be 2n mutually distinct complex numbers and define
v :=(Y1,..-,yn) and z := (z1,...,2,). Let L(y,z) be the class of matrices

L(y,z) == { [ G —di

Uk — 21 ]kl—l | Cl,...,Cn,dl,...,dne(C}.

The elements of L(y,z) are called Loewner matrices. They bear the name of Karl
Loewner who studied them in the context of rational interpolation and monotone
matrix functions [4].

The set L(y,z) is a linear space over C and a subspace of the linear space
of all the n x n complex matrices. Since addition of a constant to all the 2n
parameters cg,d; leads to the same Loewner matrix, its dimension is 2n — 1. The
set of all the n X n complex Hankel matrices also forms a linear subspace of
dimension 2n — 1. Hankel and Loewner matrices are even more closely related.
According to Fiedler [1] every Hankel matrix can be transformed into a Loewner
matrix and vice versa.

Before we can formulate this theorem, we first have to deal with some prelim-
inaries concerning Vandermonde matrices. Let ¢y, ...,t, be n complex numbers
and define t := (¢1,...,t,). The Vandermonde matriz with nodes ti,... t, is
given by V(t) = V(t1,...,tn) := [tﬁc_l]gl:l. Let fi(z) be the monic polynomial
of degree n that has zeros t1,...,t,, ft(z) ;= (z —t1)---(z — t,), and define
fe.j(2) =1} (z — t&) for j = 1,...,n. Note that f; ;(2) is a monic polynomial
of degree n — 1 for j = 1,...,n. Define the n x n matrix W (t) by the equation

fea(2) 1
ft"":(z) — W(t) Z . (2.1)
ft,r;(z) Zn._l
This means that the jth row of W(t) contains the coefficients of f; ;(2) when
written in terms of the standard monomial basis {1,z,...,2""*}. Then
W(t) [V(t)]T = diag (fea(tr),- - fon(tn)). (2.2)
The Vandermonde matrix V(t) is nonsingular if and only if its nodes t1,...,t,

are mutually distinct. In that case (2.2) implies that W (t) is nonsingular.
Let V(y,z) be the 2n x 2n Vandermonde matrix with nodes v1,...,y, and
21, -+ -,2n and similarly for W (y,z).



Theorem 1 The matriz L := W(y) H [W(2z)]? is a Loewner matriz in L(y,z)

whose parameters ci,...,cn,d1,...,d, are given by (up to an arbitrary additive
constant € € C)
e W
. ho
: h
L= |
. h2n72
: 3
. |
See Fiedler [1], Theorem 12. O

Note that L is nonsingular.

A judicious choice of the points y and z enables us to write the transformation
from H to L in terms of unitary matrices. Let w := exp(27i/n) and suppose
from now on that y;, = w*~! for k = 1,...,m. That is, let y = (1w, ...,w" ).
Let ¢ := exp(mi/n) and suppose from now on that zp = (yp for k = 1,...,n.
That is, let z = ((,({w,...,(w™1). Let 2,, be the n x n Fourier matrix,

1
N
Matrix-vector products involving €, () amount to a(n) (inverse) discrete
Fourier transform (DFT) and can be evaluated via the celebrated (inverse) fast

Fourier transform (FFT) in O(nlogn) flops. Finally, let D,, ., and D,, ¢ be the nx
n diagonal matrices D,, ,, := diag (1w, ...,w" ) and D,, ; := diag(1,(,...,("™1).

Q, = V(lw,... w" ). (2.3)

Proposition 2 The matrices W (y) and [W(z)]T can be written as
W(y)=vnDnuQn  and  [W()]" =vn(" 'Dnc¢Q Dy
See Kravanja and Van Barel [3]. O

These formulae imply that W (y)//n and [W(z)]T//n are unitary. It follows
that det L = n"a det H where the modulus of a € C is equal to one.
The Loewner matrix L can be written as

= | a—d }n :[ Ck }n _[ d ]n = _
L { Yk — 21 lgi=1 Ye =21 Jpig Uk — 2 g D(c)C — CD(d)

where D(c) := diag(cy,...,cn), D(d) := diag(dy,...,d,) and C is the Cauchy

matrix
- 1 "
C:= |: Y — 21 :|/c,l=1 )

We will now derive a representation of the Cauchy matrix C that involves the
Vandermonde matrices V (y) and V(z).

—1

Proposition 3 C = [diag (fZ(yk))Zzl] V(y)[V(z)] ! diag (fz,l(zl));;l.
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Let a = [ag]p_, and 8 = [Bk]}~, be two vectors in C**!. Consider the system
of linear equations Ca = . This can be written as
=1
—~ f
< Zal Zlyk = Bk, k=1,....n
=1 fa(

p(yr)
fz(ylc)

where the polynomial p(t) is defined as p(t) := Y ;" a; f5,1(t). Note that deg p(t) <
n — 1. The vector a contains the coefficients of p(t) with respect to the basis
{fau(t)} . If we write p(t) in terms of the standard monomial basis {t!"*}1 |,
p(t) =: Y, & t'~1, then the connection between the vectors a and & := [&y]",
is given by

ﬁk; k:l,...,n
yk—Zl

ﬁk; k‘:l,...,n

o W(z) =a’. (2.4)
This follows immediately from Equation (2.1). The fact that p(yr) = Bk fz(vr)
for £ =1,...,n immediately implies that
p(y1)
L =V(y)a = diag (fulyr)),_, 5 (2.5)
P(Yn)

Equation (2.4) implies that [W(z)]Ya = a. Equation (2.5) then implies that
V(y)[W(z)]Ta = diag (fz(yk))k:1 B, or, as Ca = 3, that V(y)[W(z)|TC~18 =
diag (fz(yk))zzl B. As 3 is arbitrary, it follows that

V)W (@) C™" = diag (falyr))_, - (2.6)
Equation (2.2) implies that V (z)[W(z)]T = diag (fz,l(zl))ln:l and hence

(W (@)]" = [V(2)] ™ diag (fa(21)),_; (2.7)
By combining (2.6) and (2.7) one easily obtains that indeed

= [ding (Fa(y0)) )" VOV (@) diag (far(2))
This proves the proposition. |

We define the coupled Vandermonde matriz Vo as

_ | V() —D(V(y) 2nx2n
Ve | vay v | €€

The following theorem shows that det H can be easily computed from det V.
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Theorem 4 det Vo = 1[2Tn]n det H.

The Schur complement formula implies that

det Vo det V(y)det[-D(d)V (z) + V(2)[V(y)]~ 'D(c)V
= detV(y)det V(z)det[[V(y)]~ 1D(c)V( —

[det V(z)]? det [D(c)V (y)[V (z)]~

be the matrices

Now let D; := diag (fz(yk))::1 and D, := diag (fzvl(zl) 7:1
that appear in Proposition 3. Then

~—

det Vo = j::g Ldet V(z)]? det[D(c)C — CD(d)]
2

det Dl
= det V(z)]? det L.
Tot D2[ et V(z)]" de

Oune can easily verify that f,(t) = t* — (" = t" + 1. Hence f,(yr) = 2 for
k =1,...,n and thus det D; = 2". Also, Equation (2.2) implies that Dy =
W (z)[V (z)]T. It follows that

det V(z)
det Vo = 2" ———= det L = 2" det V(z) det W (y) det H
€ C det[W(Z)]T € € (Z) e (y) € ?
where we have used Theorem 1. Since V(z) = V(y)D,. ¢, Q V(y)/+v/n and

W(y) = v/n D, ,Q, (Proposition 2), it follows that
detVe = 2"|detV(y)|*det D, ;detD, ., det H
= (2n)"det D, ¢det D, . det H.

. i (n—D)n (n—1)n
One can easily verify that det Dy, c = ¢ 7 and det D,,=w = . Hence

- -1 ) — 1)n 2w
det D, cdet D, , = exp[(n jnmi (n—1)n ﬂ]
’ ’ 2 n 2 n
B (n—1)nmiy i 1D
= e[ -T T = lew(R)] =i
It follows that det Vo =1 [T”] det H. This proves the theorem. |

3 Superfast rational interpolation

Let a(z) and b(z) be polynomials that satisfy the following degree conditions:
a(z) is a monic polynomial of degree n and b(z) is a polynomial of degree < n.
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Suppose also that the following linearized rational interpolation conditions are
satisfied: a(yx) — cxb(yr) = 0 and a(z;) — d;b(z) =0 for k,l = 1,...,n. One can
prove that these polynomials are uniquely determined by these conditions [6].
Similarly, let ¢(z) be a polynomial of degree < n and d(z) a monic polynomial
of degree n such that ¢(yr) — cpd(yr) = 0 and ¢(z) — did(z;) = 0 for k,l =
1,...,n. Again, these polynomials are uniquely determined. Let us combine both
interpolation problems by considering the matrix polynomial

w30 o |ecare

Then B*(z) is the only monic 2 X 2 matrix polynomial that satisfies
[1 = |B* () =[0 0] and  [1 —d; [B*(z)=[0 0]

for k,l=1,...n.

In our paper [3] we presented a sequential algorithm for computing B*(z).
The algorithm starts with the initialization By(z) := I and then constructs the
sequence By (z),...,B,(z) where By(z) is a 2 X 2 matrix polynomial of degree k
for k =1,...,n and B,(z) = B*(z). After each step two additional interpolation
conditions are satisfied. In fact, each step can be seen as a combination of two
substeps, each of which handles one additional interpolation condition. Also,
there are two different types of substeps: a “left” substep and a “right” substep
and a step can consist of either the combination left+right or right+left. More
details can be found in [3]. Our algorithm is a fast algorithm: it has arithmetic
complexity O(N?) where N := 2n. In [5] we used a divide-and-conquer approach
to obtain a superfast O(N log® N) version of the algorithm.

Let us define the matrix Vi € C2*2" as follows. For k = 1,...,n the kth row
of V¢ is given by

| n—1 n—1 ]

[1 —c | v —cryr | Yy, —CLY),

and for [ = 1,...,n the (n 4 [)th row of Vg is given by
[ 1 —dl | Zl —dlzl | | Zln71 —dlzln71 ]

Note that Vi is obtained by reordering the columns of V. One can show that
det Vo = (—1)*det Vo where o = Z?;llj = (n — 1)n/2. The determinant
of V¢, and hence also det Vi, can be easily computed from information gener-
ated by our interpolation algorithm. Indeed, if B(z) is any 2 x 2 matrix poly-
nomial, then the residual is defined as the matrix in C?"**2 whose kth row is
given by [ 1 —c¢p | B(yx) for k =1,...,n and whose (n + [)th row is given by
[1 —d; |B(z) for Il = 1,...,n. If B(z) = B*(z), then all the entries of the
residual are equal to zero. One can easily verify that the residual is given by
Ve BeliZs in case deg B(z) < n and B(z) =: Z;L:_(Jl B;z’ where B; € C?*% for
j=0,1,...,n — 1. The block vector [Bk]Z;é is called the stacking vector of B(z).
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This leads to the following important observation. Let BO,Bl, . ,Bn_l be the

stacking vectors of the matrix polynomials By(z),B1(2),...,Bn—1(z) (considered
as polynomials of degree < n— 1) generated by our interpolation algorithm. Then
Vel B By --- B,_1 ] =: Ris a block lower triangular matrix whose block

main diagonal consists of 2 x 2 matrices. The zero entries in R correspond to
interpolation conditions that are satisfied. The more our algorithm proceeds, the
more zeros appear. Note that | By, B, -+ B, ] is a block upper triangular
matrix as deg B(z) = k for k =0,1,...,n. We are going to show that

det[ BO Bl .. Bn—l ] =1. (38)
This implies that det Vi, and hence (—1)w det Vi, is equal to the product
of the determinants of the 2 x 2 blocks on the block main diagonal of R. We will

investigate these determinants in a moment. Suppose that our interpolation al-
gorithm takes a left+right step to go from By_;(z) to Bi(z) where k € {1,...,n}.

Then
z—S a 1 0
Bi(2) = Bia(2) { 0 ’ 1L ] [ QR Z — SR ]

for certain sp,sg,ar,ar € C (for more details, we refer to [5]). It follows that

hdc Bi(z) = hde Bi_1(2) [ (1) alL j|

where hdc denotes the highest degree coefficient. A similar result holds in case
the algorithm takes a right+left step. Hence det hdc By (z) = det hde By_1(z) for
k=1,...n. As By(z) := I, it follows that det hdc Bi(z) =1for k =0,1,... n.
This proves (3.8).

Let us now consider the 2 x 2 matrices that appear on the block main diagonal
of R. Consider the kth block column of R where k € {1,...,n}. This block
column contains the residual that corresponds to Bj_1(z). Let D denote the
2 x 2 submatrix of this block column that is located on the block main diagonal
of R. Suppose that our algorithm takes a left+right step to go from Bj_;(2)
to Bi(2). In the left substep the (1,1)-entry in D is chosen as pivot and D is
modified such that its (1,2)-entry becomes zero. The (2,2)-entry in the resulting
matrix is chosen as pivot in the right substep. This can be summarized as follows:

T ok 1 «ap _ Tr 0

* % 0 1 | x mg
where 77,,ar,mr € C. It follows that det D = 77w, in other words: the determ-
inant of the 2 x 2 diagonal block is equal to the product of the pivot that is used
in the left substep and the pivot that is used in the right substep. Now suppose

that the algorithm takes a right+left step to go from By_1(z) to Bi(z). In this
case the following holds:

L ][



where 7p,ar,mg € C. Therefore det D = —7p7wR, in other words: the determ-
inant of the 2 x 2 diagonal block is equal to minus the product of the pivot
that is used in the right substep and the pivot that is used in the left substep.
These observations lead to the following important conclusion: det V¢ is equal
to a times the product of the pivots that appear in our interpolation algorithm,
where o = o -+ 0, and oy, € {1, — 1} for k = 1,...,n. If the algorithm takes a
left+right step to go from Bj_1(2) to Bg(z), then ay, = 1. If it takes a right+left
step, then ap = —1.

So far we have only considered the fast version of our interpolation algorithm.
The numerical stability of this algorithm is enhanced via pivoting and iterat-
ive refinement [3]. The superfast version that we presented in [5] is based on
a divide-and-conquer approach in which at the lowest interpolation level the
fast interpolation algorithm is used. Therefore, at this level the accuracy of the
computed solution can be improved via pivoting and iterative refinement. After
combining solutions of a lower level into a solution of the next level, one can again
use iterative refinement. Another technique, explained in detail in [5], postpones
some “difficult” interpolation conditions until the very end of the algorithm. All
these stabilizing techniques increase the accuracy of the solution to the interpol-
ation algorithm and hence the accuracy of the computed determinant. However,
one important difference with the solution of structured linear systems is the
fact that we cannot use iterative refinement at the very end of the algorithm to
increase the accuracy of the computed determinant. It is an open question if a
similar procedure exists for refining approximations for a determinant. As the
length of this paper is limited, we refer the reader who is interested in more de-
tails and numerical examples to a companion paper about the fast and superfast
computation of Toeplitz determinants [2].
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